

Metabolic Engineering with OptFlux Exercise Workbook Paulo Maia	
Exercise 1	
Consider the simplified $E. \ coli$ core model (Orth et al, 2009).	
1. Find and load the model directly from the OptFlux model repository	$File \rightarrow Model \rightarrow New Project$
2. Export the model to SBML	$File \rightarrow Export \rightarrow Model \ to$ $SBML$
3. Analyse the SBML file. What kind of information is stored in the SBML file for each reaction and for each metabolite?	
4. Explore model properties inside OptFlux: Number of reactions, metabolites, genes, stoichiometric matrix and steady-state equations	$Clipboard \rightarrow Metabolic Model$
5. Analyse gene-protein-reaction rules (GPRs)	$Clipboard \rightarrow Metabolic Model$
6. Analyze the degree of underdetermination of this model. How many measure- ments would be necessary in order to have a determined system?	$\begin{array}{l} \text{Simulation} \rightarrow \text{Flux Analysis} \\ \rightarrow \text{Flux Analysis} \end{array}$
7. Load the layout file (<i>E.coli_central_carbon.xgmml</i>) and explore the layout ca- pabilities.	
8. Find a genome-scale metabolic model (GSMM) for <i>E. coli K12</i> in the OptFlux model repository (iJR904, iAF1260 or iJO1366) and repeat steps 4, 5 and 6. Discuss you findings.	
Exercise 2	
Consider the simplified $E. \ coli$ core model (Orth et al, 2009).	
1. Perform a wild-type phenotype prediction - analyse results	Simulation \rightarrow Wild type
2. Define anaerobic medium conditions and repeat previous step	$\begin{array}{l} File \rightarrow Create \rightarrow \\ Environmental \ conditions \end{array}$
3. Analyse main differences in the layout visualizer (using the layout loaded in exercise 2) – create a comparison to help	Analysis \rightarrow Simulation comparison
4. Calculate the maximum theoretical flux yield and maximum theoretical carbon yield of Succinate having the following information in consideration:	$Analysis \rightarrow Flux Variability Analysis \rightarrow Determine Flux Limits$

SilicoLife, Lda.

Metabolic Engineering with OptFlux FEUP class workbook

• Glucose \rightarrow C6H12O6	
• Succinate \rightarrow C4H6O4	
• $YIELD(V_i) = \frac{v_{target}}{v_{substrate}}$	
• $CYIELD(V_i) = \frac{v_{target} \times C_{target}}{v_{substrate} \times C_{substrate}}$	
5. Evaluate the maximum theoretical succinate production for the various levels of minimum desired biomass	Analysis \rightarrow Flux Variability Analysis \rightarrow Flux-variation plot
6. Perform mutant phenotype predictions (one deletion at a time - incremental)	Simulation \rightarrow Knockout
• 1st - R_SUCDi – succinate dehydrogenase (b0721 & b0722 & b0723 & b0724)	
\bullet 2nd - R_G6PDH2r - glucose 6-phosphate dehydrogen ase (b1852)	Hint: Selecting a previous simulation in the clipboard will
$\bullet~3rd$ - R_ACKr - acetate kinase (b3115 b2296 b1849)	pre-fill future simulation operations
• Analyse and interpret the results	
• Perform this exercise using both reaction and gene deletions, checking the effects of the latter in the set of inactivated reactions.	
7. Evaluate the results of the previous mutant, using different phenotype predic- tion methods.	
8. Evaluate the robustness of the solution using Flux Variability Analysis (FVA)	Hint: Use the flux variation plot
 Evaluate the mutant against one of the previously loaded GSMMs (iJR904, iAF1260 or iJO1366). 	
Exercise 3	
Consider the <i>E. coli</i> core model (Orth et al, 2009).	
1. Compute the set of critical genes and critical reactions.	
2. Develop a metabolic engineering strategy for the production of succinate, ta- king the following premises into account:	
• The ME strategy can take either gene or reaction information into account	
• The larger the number of gene deletions, the more expensive the process will be to implement in the lab.	
• Biomass formation is to be expected.	
• You can use knockouts as well as over/under expressions.	
3. Justify the selected strategy, verifying the validity of your selected modificati- ons using appropriate databases.	Hint: Use Ecocyc
4. Create a comparison between your strategy and the wild-type flux distribution and analyze the differences in the layout visualizer.	